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Abstract

Adaptive therapy using immune effector cells engineered by means of chimeric
antigen receptors (CAR) has risen as a hopeful cancer management option. Despite
their unprecedented success in haematological malignancies, CAR-modified T cells
have shown limited efficacy in solid tumours, as the tumor's immune-suppressive
microenvironment inhibits CAR-modified immune effector cells' functionality by
different pathways, counting checkpoint receptor ligands expression like PD-L1 &
recruitment tregs like suppressive immune cells. Receptor of epidermal growth factor
(EGFR) could be the target of a ll-generation Chimeric antigen receptor T cellshat was
transduced to NK-92 cell. In our research, we examined the antitumor efficacy of EGFR
specific NK-92 (CAR-NK-92) cells using a xenograft mice model & in conjunction with
tyrosine kinase inhibitor cabozantinib. We discovered that EGFR positive renal
carcinoma cells (RCC) 786-O and ACHN may specifically detect and activate CAR_NK_92
cells. They also displayed particular cytotoxicity against RCC in in vitro & in vivo
models. Furthermore, we discovered that cabozantinib improves RCC-specific
cytotoxicity by enhancing the expression of EGFR while reducing PD-L1 expression in
RCC. Our research shows that CAR_NK 92 cells possess anti cancer therapeutic
potential for EGFR-positive tumour cells, and that cabozantinib can boost CAR_NK_92
cell cytotoxicity when treated together.
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Introduction

RCC - Renal cell carcinoma is responsible
towards 90 to 95 percent of carcinoma in the
kidney. With about 30% recurrence rate after
radical resection, it is one of the most deadly
urological neoplasms. RCC is also resistant to
standard  chemotherapy and  radiotherapy’.
Targeted therapies such as tyrosine kinase
inhibitors [TKI], cytokine therapy, and immune
checkpoint blockers are at the center of much
attention for RCC??. TKI and immune
checkpoint inhibitors have demonstrated only a
15% to 35% objective response rate’. These call
for novel therapeutic strategies that will be more
amicable and efficient for RCC management.
The immune effector cells utilization in cancer
therapy has sparked a lot of interest, and there's a
lot of evidence that it works. Ex-vivo-expanded
autologous tumor-infiltrating T  lymphocytes
(TILs) and recombinant human interleukin-2
(thIL-2)  resulted in continuous complete
remission of metastatic malignant melanoma in
25% to 50% of patients treated in the 1980s and
1990s>¢ TILs infusion enriched for patient-
specific neoantigens has also shown promising
benefits in metastatic colorectal or breast cancer
patiens "%, However, challenges in producing an
appropriate number of bioactive TILs from
patients with non-melanoma  malignancies
obstruct the implementation of these techniques.
TCRs for tumor-reactive T cells (TCRs) were
cloned from TILs responsive patients and
expressed in T cells expanded from another tumor
patient’s  blood, allowing researchers to
manufacture an almost infinite number of cells
for therapeutic use. Cloned TCR and chains, on
the other hand, link with endogenous receptors,
resulting in low transgenic TCR levels.”. TILs
found in melanoma tumours can detect self-
antigens produced at low levels in healthy tissues,
resulting in considerable on-target and off-target

1011 35 well as crossreactivity'>'.

damage.
Immune effector cells with chimeric
antigen receptors (CAR) have emerged as a

promising new class of cancer therapies. MHC
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has no effect on CAR-modified T cells, hence
they can be used on patients of any HLA type.
They also prevent MHC downregulation-induced
resistance.  Although certain  first-generation

CHIMERIC ANTIGEN RECEPTOR T CELLS
cells have demonstrated long-term persistence!®'#
their use is limited due to their limited growth
and inability to elicit clinically significant anti-
tumor effects'??. Second-generation CARs with
a co-stimulatory endodomain upstream of CD3z,
such as CD28 or 4-1BB, demonstrate
significantly increased expansion and anti-tumor
23,24 25-29

. In high-grade B cell lymphoma

23,30-33,

activity
and B cell acute lymphoblastic leukemia
CD19 specific Il-generation chimeric antigen
receptor T cells have showed robust and long-
lasting responses. The cells also effectual in ALL
patients®, & Patients with multiple myeloma
benefit from chimeric antigen receptor T cells
that target the B cell maturation antigen
(BCMA)*8. Treatment with chimeric antigen
receptor T cells showed severe adverse drug
ractions, E.g. cytokine release syndrome
(CRS)¥7*#4 & immunological effector cell-
associated neurotoxicity syndrome (ICANS)*.
Natural killer cell (NK) - immune effector
cell. These have generated much interest for
beneficial platform for tumor. Key benefits from
NK cells are that they are cytotoxic and do not
have an endogenous TCR, thus they do not cause
graft-versus-host reactions when given to MHC-
incompatible patients.”?. NK cells also have the
potential to extravasate and migrate to tumor
tissue®>. However, NK cells utilization is limited
because of difficulty in obtaining a sufficient
number of therapeutically active NK cells in
blood, it make up 10% of lymphocytes and are
generally inactive. Moreover, allogeneic NK cell
preparation needs depletion of T cells to prevent
GVSD. These issues were solved by creating the
immortal cell line NK-92, which exhibits all of
the features of activated NK cells44, from a
patient with clonal NK-cell lymphoma. In mice,
parental NK-cells showed strong anti-tumor
cfficacy against melanoma, leukaemia, and
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myeloma. NK-92 cells have been customized to
CARs expression in order to improve their anti
cancer potency. CAR-modified NK-92 cell have
demonstrated remarkable efficacy in eliminating
AML®,  lymphoma®,

cancer®, breast cancer?

myeloma?”  prostate

9 50

, neuroblastoma®, and
glioblastoma®'. Engineered NK-92 cells have also
been udilised in conjunction with other
therapeutic platforms, with CAR_NK_92 cells
exhibiting improved anti cancer effectiveness. A
combination of EFGR specific CAR-altered NK-
92 cells and oncolytic herpes simplex virus 1
demonstrated encouraging results in a mice model
of breast tumour metastases, for example.’>. In
human colorectal cancer models, combining
EpCAM  detailed CAR_NK_ 92  cells &
Regorafenib  enhanced tumour  suppression
efficacy. .

NK-92 (CAR-modified immune effector
cells), doesn’t showed compelling confirmation of
action to solid tumours despite their
extraordinary effectiveness in several hematologic
malignancies. Inefficient trafficking and an
immune-suppressive microenvironment within
solid tumours hampered CHIMERIC
ANTIGEN RECEPTOR T CELLS cell
functionality by  different  pathways, via
Checkpoint receptor ligand expression (e.g., PD-
L1) & suppressive immune cells that interfere
with CHIMERIC ANTIGEN RECEPTOR T
CELLS cell activity in a variety of ways (e.g.,
Tregs, MDSCs)**%.

Recent research has shown that certain
tyrosine kinase inhibitors (TKIs) alter the tumour
microenvironment and enhance anti-tumor
immunity in addition to direct anti-tumor action.
Doxorubicin®, sunitinib®’, sorafenib®®%°, and
gemcitabine®®®! have been reported to reduce
immune suppression and enhance anti-tumor
immune response. These observations suggest that
concurrent application of immunotherapy and
TKI  can  enhance  the  efficacy  of
immunotherapy®®6>-%.

Cabozantinib comes under TKI that is
FDA approved in renal cell tumor, hepatocellular
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tumor and medullary thyroid tumor in patients
who have previously received sorafenib. It inhibits
the enzymes MET and VEGFR2%. They enhance
number of CD8+ &CD4+ T cells in spleen &
reduce immune suppressive cells migration like
MDSCs and Tregs to tumors®”. Cabozantinib also
eliminates MDSC in the

microenvironment in a mouse model,

tumour

demonstrating significant synergistic effects when
coupled with immune checkpoint inhibition &
tumor vaccine treatment.”%. As a consequence,
we believe cabozantinib might be used in
combination with EGFR- detailed CAR_NK 92
cells increases immune-based solid tumour
therapies efficacy. Mouse model of human RCC,
we developed a 2™ generation EGFR specific
CAR in opposition to EGFR+ tumours and
investigated how cabozantinib influenced the
therapeutic efficacy of CAR- customized NK-92
cells.

Materials and Methods

Human Renal Cancer Cell Lines (2.1)
The cell lines 786-O & ACHN, as well as the
human colorectal cancer cell lines SW620 and
HT29, were provided by the American Type
Culture Collection. 786-O & HT29 cells grown
in RPMI-1640 media added with 10% FBS
(Thermo Fisher Scientific, USA) & 1%
penicillin/streptomycin (Thermo Fisher
Scientific, USA) (Thermo Fisher Scientific, USA).
The ACHN and SW620 cell lines grown in
Dulbecco's modified Eagle's medium (Thermo
Fisher Scientific, USA) supplemented with 10%
FBS & 1% penicillin/streptomycin. NK-92 cells
& transduced NK-92 cells cultured in an alpha
modification of Eagle's minimum essential
medium (Thermo Fisher Scientific, USA) added
with 2 mM L-glutamine, 0.2 mM myo-inositol,
0.02 mM folic acid, 0.1 mM 2-mercaptoethanol,
400 IU/ml IL-2 (Peprotech, America), 12.5
percent FBS.

2.2 The second stage is Flow Cytometric
Analysis. To evaluate lentivirus transduction rate

in NK-92 cells, flow cytometry have been used
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for analyse GFA expression in Curl-NK-92 &
CAR_NK_92 cells. Flow cytometry was used to
assess the surface expression of EGFR and PD-L1
in tumor cells that had previously been treated
with cabozantinib. Cancer cells were washed and
resuspended in PBS supplemented with 2% BAS
at 1x106 cells/ml. 1001 of cell suspensions were
treated with PE-labeled mouse anti-human EGFR
antibody (BioLegend, USA) or PE/Cy7 labelled
mouse anti-human PD-L1 antibody (BioLegend,
USA) for 30 minutes at room temperature in the
dark (BioLegend, USA). The cells were then
washed and resuspended in 0.5ml PBS before
being analysed by a CytoFlex flow cytometer
(Beckman Coulter, USA). Using methods
mentioned above, a second batch of cells was
stained with Isotype Control Antibodies
(BioLegend, USA).

2.3. Analysis of Western Blots To
produce cell lysates, phosphatase & protease
inhibitors being given to the NP-40 solution
(Thermo Fisher, USA). After determining the
protein content, Each sample had 25 g of total
protein dispersed in an equal amount of sample
buffer and ran on a 10% SDS-PAGE gel. Protein
bands being transmitted across nitrocellulose
membranes. (Amersham, Sweden) following
separation and 60 minutes at ambient
temperature blocking with 5% BSA. Afterwards,
the membranes incubated with a rabbit anti-
human anti-CD3 antibody. Incubate rabbit anti-
human GAPDH antibody (1:1000, Invitrogen,
USA) or rabbit anti-human GAPDH antibody
(1:1000, Invitrogen, USA) at 4°C overnight
(1:1000, Invitrogen, USA). Sections were
incubated for 60 minutes at ambient temperature
with an HRP conjugated anti-rabbit IgG (1:5000,
Invitrogen, USA) in blocking buffer after 3
washing with TBST. The ECL system (Millipore)
was used to identify the target proteins, and the
ChemiDoc XRS system was used to display them
(Bio-Rad).

2.4. Analyze with ELISA kit. ELISA kits
(Abcam, UK) were used to measure human IFN-,
perforin, and granzyme B in cell-free supernatants
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according to the manufacturer's procedure. 1x104
target cells co-cultured among ctrl-NK-92 /
CAR_NK_92 as effector cells in a 96-well plate
for 24 hours in effector to target ratios of 0.5:1,
1:1, & 2:1, respectively. 100pl of cell-free
supernatants or standard were applied to
antibody-coated wells of the provided well strips.
Each well received 50pl of biotinylated tagged
detector antibody, which was incubated at
ambient temperature for 120 minutes. After three
washes with washing buffer, each well received a
100pl streptavidin-HRP solution incubated for
additional 30 minutes. After cleaning the wells
again, 100! of chromogen TMB solution added &
incubated for 15 minutes at ambient temperature.
Finally, 1001 stop reagent was added to all well, &
the absorbance measured at 450nm wavelength
by a microplate reader.

2.5. A cytotoxicity test is performed. As
per procedure, an LDH cytotoxicity test kit
(Abcam, UK) was used to determine cytotoxicity.
1104 target cells cocultured with CAR_NK_92 /
Crtrl-NK-92 cells at E/T ratios of 1:1, 3:1, 10:1,
or 30:1 for 4 hours in RPMI-1640 with 15mM
HEPES & 5% FBS. In an optically transparent
96 well microplate, 100pl of cell-free supernatant
was added to the appropriate wells. Each well
received 100pl of newly produced reaction
mixture, It was kept at ambient temperature for
30 minutes while being protected from light. The
product's recommendations were followed for
setting the background control, low control, and
high control. A microplate reader worn to
measure absorbance at 490nm. 610nm was
chosen as the standard wavelength. The technique
100x (absorbance of test sample — absorbance of
low control)/ (absorbance of high control —
absorbance of low control) was used to compute
the percent cytotoxicity.

2.6. Kit for Counting Cells No. 8 (CCK-
8) Assay. The cytotoxicity of Cabozantinib was
evaluated using the Cell Counting Kit-8 (Sigma-
Aldrich). 5x103 cells were treated with DMSO or
2.5g cabozantinib for 0, 24, 48, 72 & 96 hours in
96 well microplates. After that, each well was
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supplied with 10 1 of CCK-8 solution, and the
cells were cultured for 1 hour at 370C. A
monochromator microplate reader was used to
measure absorbance at 450nm wavelength, which
was used to evaluate cell viability.

2.7. In vivo studies on efficacy. The in
vivo efficacy of EGFR specific CAR_NK_92 cells
was tested using a tumour xenograft model in
NOD SID mice. In summary, 5x106 786-O &
ACHN cells injected into right side in
acclimatised 5-week-old female NOD SID mouse
suspended in 1001 FBS and antibiotic-free RPMI
1640 or DMEM medium. After then, the mice
were split into five groups: untreated,
cabozantinib, Ctrl-NK-92, CAR-NK-92, &
cabozantinib+ CAR-NK-92.  Cabozantinib &
cabozantinib+ CAR_NK 92
receiving cabozantinib (10mg/kg) via gavage 5

groups started

times a week for 6 weeks 5 days after inoculation
with cancer cells (day 5). The Ctrl-NK-92 group
got 3x106 Curl-NK-92 cells once a week for a
total of six times starting on day 6. CAR_NK_92
& cabozantinib+CAR_NK_92 groups received
3x106 CAR_NK_92 cells once per weak, a total
of 6 times, starting on day 6. Every other day, all
NK-92 cell groups given with 2000 IU
intraperitoneally  administered  recombinant
human IL-2 (thIL-2). The tumor's length and
breadth were measured using a digital calliper,
and the quantity deliberated by (tumour volume
= length width2/2). Bioluminescent imaging was
used to quantify tumour size at the end (BLI).
Animals then euthanized, and tumors parts
excised for histological examination.

2.8.  Immunohistochemistry.  Tumor
tissues were paraffin embedded & made as 3-5m
slices after being fixed in 10% formalin. By
labelling tumour tissue sections with rabbit anti-
human CD3 antibody, NK-92 cells in tumour
tissue sections were identified (1:200, Abcam).
Under 200 magnifications, The marked samples
were processed in 10 intratumoral regions of the
cach slide by randomly.

2.9. Analytical Statistics All data was
analysed with GraphPad Prism 5 software &

Tob Regul Sci.™ 2021;7(5): 1811-1828

given as mean + SEM.

Results

3.1. CAR_NK 92 Cells with EGFR
Specificity

As illustrated in Figure 1, an EGFR
specific scFv was connected in tandem to the
hinge & transmembrane domains of CD8, the
intracellular signalling domains of CD28, & CD3
to create a CAR (a). CAR was included into a
lentiviral vector system that also contained
puromycin & green fluorescent protein sequences
(GED).

EGFR-CAR or empty vectors were
transduced into the NK-92 cell line, yielding
EGFR-CAR_NK 92 & Cul-NK-92  cells,
respectively. Puromycin selection of EGFR-
CAR_NK 92 and ctr-NK-92 cells resulted over
60% GFPpositive cells (Figures 1(b) and 1(c) (c)).
Western blot examination with rabbit antihuman
CD3 monoclonal antibody (Figure 1(d))
confirmed the expression of EGFR-CAR in
EGFR-NK-92 cells but not in ctr-NK-92 cells.

3.2. EGFR-CAR_NK 92 Cells are
cytotoxic to EGFR+ Renal Cancer Cells in vitro.

EGFR expression in EGFR+ cell lines
786-O assessed by flow cytometry & ACHN,
EGFR- cell lines HT-29 and SW620. Figure 2
shows that EGFR was expressed substantially in
786-O and ACHN cells but not in HT-29 or
SW620 cells.

To determine whether EGFR+ cell lines
786-O & ACHN activate CAR_NK 92 cells, we
used a cytokine release assay. Figure 3 shows that
when CAR_NK 92 cells were cocultured with
786-O or ACHN, the release of IFN-, perforin,
and granzyme B was significantly and dose-
dependently increased compared to Crtrl-NK-92
cells. When CAR_NK 92 & Ctrl-NK-92 cells
co-cultured with EGFR- cell lines SW620 and
HT29, inconsequential difference in cytokine
production by CAR_NK_92 & Curl-NK-92 cells.
The findings revealed that CAR_NK_92 cells
could recognise and activate EGFR-positive cells.

Lactate dehydrogenase (LDH) release tests
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were used to see if CAR_NK 92 cells could kill
EGFR+ 786-O and ACHN cells. At effector to
target ratios of 3:1, 10:1, & 30:1, CAR_NK_92
cells outperformed Cerl-NK-92 cells in terms of
dose-dependent cytotoxicity against 786-O and
ACHN cells. CAR_NK_92 & Ctrl-NK-92 had
comparable cytotoxicity against EGFR- SW620
and HT?29 cells in same E/T ratio. CAR_NK 92
cells are solely cytotoxic to EGFR+ cells,
according to these data.

3.3. Cabozantinib's In Vitro Effect on EGFR-
Specific CAR_NK_92 Cell Functions

We estimated the potency of cabozantinib
in 786-O & ACHN cell proliferation using cell
counting kit-8 assay. When given at 2.5g/ml,
cabozantinib inhibited the development of both
786-O & ACHN cells for 24, 48, 72, & 96 hours
(Figure 5). In the presence of 2.5g/ml
cabozantinib, cell proliferation persisted for
another 96 hours. In all future in vitro studies, we
utilised this cabozantinib concentration.

Cancer cells are known to express cell
surface markers that help them escape therapies®.
We looked at EGFR & PD-L1 expression in 786-
O & ACHN cells after 24 hours of cabozantinib
therapy to determine if it affected the phenotype
of the cells and therefore modified their
susceptibility to EGFR-CAR_NK 92  cell-
mediate cytotoxicity. Cabozantinib treatment
increased EGFR expression significantly in both
786-O & ACHN cells, as seen in figure 6. PD-L1
expression, on the other hand, was significantly
decreased in both 786-O & ACHN cells.
Cabozantinib may help in the identification and
activation of EGFR-CAR-KN-92 cells by
increasing EGFR  expression, according to the
findings. Furthermore, cabozantinib's decrease of
PD-L1 expression may contribute to the
enhanced  cytotoxicity of  EGFR-specific
CAR_NK_92 cells against tumour cells.

Then, over the next 24 hours, we
cocultured CAR_NK 92 or CTR-NK-92 cells
with 786-O & ACHN cells that had previously
undergone cabozantinib therapy. Cell lysis was
determined  using LDH  release  assays.
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Cabozantinib treatment made 786-O & ACHN
cells  more susceptible to EGFR- detailed
CAR_NK_92 cell-mediated cytotoxicity, as seen
in figure 7.

These findings show that cabozantinib
changes the phenotypes of 786-O and ACHN
cells, ~making it highly vulnerable to
CAR_NK 92 cell-mediated  cytotoxicity.3.4.
Combination with Cabozantinib Enhances In
Vivo Cytotoxicity of EGFR-Specific CAR-NK92
Cells.

We created a subcutaneous xenograft in
NOD-SCID mice utilising 786-O or ACHN
cells expressing firefly luciferase (786-O-Luc and
ACHN-Lug, respectively) to examine the effect of
cabozantinib on CAR_NK_92 cells' in vivo
antitumor efficacy. (Figure 8(a))

Cabozantinib, ctrl-NK-92, CAR-NK-92,
and the amalgamation of CAR_NK 92 &
cabozantinib drastically slowed progression in
both 789-O-Luc and ACHN-Luc tumours, as
shown in figure 8(b)-8 (d). In addition, when
compared to Cul-NK-92, CAR-NK-92, and
CAR_NK 92 plus

cabozantinib treatment significantly reduced the

cabozantinib  groups,

progression of both tumours.

3.5. Cabozantinib's Effect on
CAR_NK_92 Cell Migration.

Tumor samples from 786-O tumours
were stained with monoclonal antihuman CD3
primary antibody to appraise infiltration rate of
CAR_NK_92 cells. A previous study [13] found
that CD3 is expressed by wild type NK-92 cells.
As a result, staining with antihuman CD3
primary antibody should show both Ctr-NK-92
and CAR_NK_92 cells infiltrating the tumour.
NK-92 cells were found in tumour samples from
all NK-92 treated animal groups, but not from
untreated or cabozantinib treated animals, as
depicted in figure 10. When compared to the
Cul-NK-92 group, infiltration was substantially
greater in CAR-NK-92+ cabozantinib treated
mice. Surprisingly, there was no significant
difference in infiltration rates between the

1816



Youqing Huang et al.

Combination Therapy with EGFR Specific CAR_NK_92 Cells and Cabozantinib against Human Renal Cell

Carcinoma

CAR_NK 92 & CAR-NK-92+ cabozantinib
category.

4. Discussion

NK cells are immune cells that play an important
role in the surveillance against cancer and virus-
infected cells. There are several advantages in
using NK cells as a therapeutic platform. NK cells
can extravagate and migrate to solid tumor tissue.
They are not restricted by MHC, so they can be
used in all patients irrespective of HLA types.
Moreover, NK cells do not express TCR; thereby
do not cause graft-versus-host reactions. However,
generating a sufficient amount of NK cells from
peripheral blood for clinical use is a big challenge.
This limitation of NK cell therapy has been
circumvented by using the NK-92 cell line, which
demonstrates all the characteristics of activated
NK cells. Furthermore, the anticancer activity of
primary NK cells is significantly suppressed by
the immune suppressive mechanisms of cancer
cells. Previous studies have demonstrated that
modification of NK cells to express CAR against
specific  cancer-associated-antigen  significantly
enhances the anticancer efficacy of NK cells.
However, in developing a CAR-modified NK
cell, selection of the target antigen is of
paramount importance. Such an antigen has to be
expressed by the cancer cell in abundance, while
expression in normal cells should be at a
minimum. EGFR is overexpressed or undergo
mutation in most cancers, including RCC, breast

71-73

cancer, glioblastoma, and lung cancer In our

study, we developed second-generation wild type
EGFR specific CAR-NK-92 cells. Our results
convincingly demonstrated the anticancer efficacy
of CAR-NK-92 cells against RCC in the mice
xenograft model.

Cabozantinib is a tyrosine kinase inhibitor
that has been reported to modulate the immune
suppressive microenvironment of solid tumors
and alter the phenotype of cancer cells.
Cabozantinib has also been shown to have a
commensal response in immune therapy in
cancer. Considering the above observations, we

hypothesized that concurrent application of
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cabozantinib might enhance the anticancer
efficacy of CAR-NK-92 cell therapy. In our
experiments, we observed that cabozantinib
enhanced CAR-NK-92-mediated  cytotoxicity
against RCC cells as well as increased the
expression of EGFR in RCC cells. It has been
reported that the efficacy of immune therapy in
solid tumors is significantly influenced by the
expression level of the target antigen in the cancer
cells. We, therefore, attributed the higher
anticancer efficacy of CAR-NK-92 cells to
enhanced expression of EGFR in RCC cells
caused by concurrent cabozantinib treatment.
Furthermore, we observed that cabozantinib
suppresses the expression of PD-L1 in the target
cells. Expression of PD-L1 on tumor cells is one
of the mechanisms of immune evasion since this
inhibits the functional activity of cytotoxic
lymphocytes, including NK cells. Suppression of
PD-L1 expression on target cells by cabozantinib,
therefore, enhances the susceptibility of EGFR
positive cells to CAR-NK cell cytotoxicity.
Cabozantinib is also known to suppress the
functions of MDSCs and Tregs, two most
potential immune suppressive cells, present in
cancer tissues. Further studies are needed to
elucidate the influence of MDSCs and Tregs in
cabozantinib and CAR-NK-92 cell combination
therapy in RCC.

Cabozantinib is ill tolerated by the renal
cell carcinoma patients at its clinical dose
60mg/day. In our experiments in mice,
10mg/kg/day of cabozantinib  significantly
enhanced the cytotoxicity of EGFR specific CAR-
NK-92 cells against EGFR positive RCC cells.
According to the FDA guidance for the
conversion of animal dose to human dose,
10mg/kg in mice is equivalent to (10 x .081)
0.81mg/kg. Considering the average weight of
human being 60kg, that would be 48.6mg/day, a
significantly lower dose than present clinical dose.
This dose may be better tolerated by the patient.
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Figure 1: Generation and characterization of EGFR-specific CAR-NK-92 cells. (a) Structure of EGFR-
specific CAR. CAR was constructed with wild type EGFR specific scFv linked to the hinge and
transmembrane domains of CD8, and the intracellular signaling domains of CD28 and CD3(. (b)
Transduction efficiency of lentivirus in NK-92 cells. NK-92 cells were transduced either with lentivirus
vector (Ctrl-NK-92) or lentivirus containing the EGFR-specific CAR encoding sequence (CAR-NK-92)
and enriched by repeated selection with puromycin. The abundance of the cells expressing GFP was
determined by flow cytometric analysis. (c) CAR expression in NK-92 cells was confirmed by Western blot

with a monoclonal anti-human CD3{ antibody. GAPDH was detected as an internal control.
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Figure 2: Surface expression of EGFR in human cancer cell lines. Expression of EGFR in human colon
cancer cell lines SW620, HT 29, and renal cancer cell lines 786-O, ACHN were determined with flow
cytometry.
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Figure 3: Specific cytokine release of EGFR-specific CAR-NK-92 cells against EGFR" cells. Ctrl-NK-92
and CAR-NK-92 cells were cocultured with either EGFR™ or EGFR' target cells for 24h at an E/T ratio of
0.5:1,1:1,and 2 : 1 and the release of cytokines were measured by ELISA. *xp < 0 01; ***p < 0 001. ns:

not significant.
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Figure 4: EGFR" cell-specific cytotoxicity of EGFR-specific CAR-NK-92 cells. CAR-NK-92 and Ctrl-

NK-92 cells were cocultured cither with EGFR- or EGFR+ cancer cells for 4h at indicated E/T ratio and

the cytotoxic activity of CAR-NK-92 and Ctr]-NK-92 cells was determined using lactate dehydrogenase
(LDH) release assay. *p < 0 05; *xp < 0 01; ***p < 0 001. ns: not significant.
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Figure 5: Suppression of proliferation of renal cancer cell 786-O and ACHN by cabozantinib. 786-O and
ACHN cells were incubated with 2.5 pg/ml cabozantinib or vehicle (DMSO) for 24, 48, 72 and 96h and
assayed for cell viability using CCK-8 kit. *p < 0 05; **p < 0 01; ***p < 0 001.
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Figure 6: Cabozantinib alters the expression of EGFR and PD-L1 in RCC. 786-O and ACHN cells were
treated with 2.5 pg/ml cabozantinib or vehicle for 24h and analyzed by flow cytometry for surface
expression of EGFR and PD-L1.
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Figure 7: Treatment with cabozantinib increases the sensitivity of renal cancer cells to the CAR-NK-92 cell-

mediated cytotoxicity. 786-O and ACHN cells were treated with 2.5 pg/ml cabozantinib or vehicle for 24h,
then incubated with the CAR-NK-92 cells for 4h. Cytotoxicity of CAR-NK-92 cells was determined by
LDH release assay. *p < 0 05; #xp < 0 01; ***p < 0 001. ns: not signiﬁcant.
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Figure 8: Therapeutic efficacy of EGFR-specific CAR-NK-92 cells combined with cabozantinib for human

renal cancer xenograft established with 786-O cells. (a) Schematic diagram showing the treatment protocol
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of the mice. (b) The tumor growth curves during the experiment. (c) Luminescence images showing the

tumor size at the end of the treatment. (d) Quantitative results of the tumor luminescence intensity shown

in (c). *p <0 05; *xp < 0 01; ***p < 0 001.
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Figure 9: Therapeutic efficacy of EGFR-specific CAR-NK-92 cells combined with cabozantinib for human
renal cancer xenograft established with ACHN cells. (a) Schematic diagram showing the treatment program
of the mice. (b) The tumor growth curves during the experiment. (c) Luminescence images showing the

tumor size at the end of the treatment. (d) Quantitative results of the tumor luminescence intensity shown
in (c). *xxp <0 001.
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Figure 10: Tumor infiltration analysis of NK-92 cells in vivo. (a) Immunohistochemical analysis of human
CD3+ NK-92 cells in established
s.c. xenografts. The images were obtained under x200 magnification. (b) The corresponding quantitative
analysis results of human CD3+ NK-92 cells shown in (a). **p < 0 01.
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